"""
MCMC step acceptance test.
"""
__all__ = ["metropolis", "metropolis_dr"]
import os
from numpy import array, cov, dot, errstate, exp, eye, minimum, sqrt, where
from numpy.linalg import cholesky, inv, norm
from . import util
BUMPS_TEMPERATURE = float(os.environ.get("BUMPS_TEMPERATURE", "1"))
def paccept(logp_old, logp_try):
"""
Returns the probability of taking a metropolis step given two
log density values.
"""
return exp(minimum(logp_try - logp_old, 0) / BUMPS_TEMPERATURE)
[docs]
def metropolis(xtry, logp_try, xold, logp_old, step_alpha):
"""
Metropolis rule for acceptance or rejection
Generates the next generation, *newgen* from::
x_new[k] = x[k] if U > alpha
= x_old[k] if U <= alpha
where alpha is p/p_old and accept is U > alpha.
Returns x_new, logp_new, alpha, accept
"""
with errstate(under="ignore"):
alpha = paccept(logp_try=logp_try, logp_old=logp_old)
alpha *= step_alpha
accept = alpha > util.rng.rand(*alpha.shape)
logp_new = where(accept, logp_try, logp_old)
## The following only works for vectors:
# xnew = where(accept, xtry, xold)
xnew = xtry + 0
for i, a in enumerate(accept):
if not a:
xnew[i] = xold[i]
return xnew, logp_new, alpha, accept
def dr_step(x, scale):
"""
Delayed rejection step.
"""
# Compute the Cholesky Decomposition of X
nchains, npars = x.shape
r = (2.38 / sqrt(npars)) * cholesky(cov(x.T) + 1e-5 * eye(npars))
# Now do a delayed rejection step for each chain
delta_x = dot(util.rng.randn(*x.shape), r) / scale
# Generate ergodicity term
eps = 1e-6 * util.rng.randn(*x.shape)
# Update x_old with delta_x and eps;
return x + delta_x + eps, r
[docs]
def metropolis_dr(xtry, logp_try, x, logp, xold, logp_old, alpha12, R):
"""
Delayed rejection metropolis
"""
# Compute alpha32 (note we turned x and xtry around!)
alpha32 = paccept(logp_try=logp, logp_old=logp_try)
# Calculate alpha for each chain
l2 = paccept(logp_try=logp_try, logp_old=logp_old)
iR = inv(R)
q1 = array(
[exp(-0.5 * (norm(dot(x2 - x1, iR)) ** 2 - norm(dot(x1 - x0, iR)) ** 2)) for x0, x1, x2 in zip(xold, x, xtry)]
)
alpha13 = l2 * q1 * (1 - alpha32) / (1 - alpha12)
accept = alpha13 > util.rng.rand(*alpha13.shape)
logp_new = where(accept, logp_try, logp)
## The following only works for vectors:
# xnew = where(accept, xtry, x)
xnew = xtry + 0
for i, a in enumerate(accept):
if not a:
xnew[i] = x[i]
return xnew, logp_new, alpha13, accept